Publications

cover

 

82. V. Fidelsky and M. Caspary Toroker, “Perovskite La0.3Sr0.7Fe0.7Cr0.3O3-delta catalysis raises the bar: preventing unwanted near-surface Sr segregation and SrCO3 precipitation”, Advanced Theory and Simulations, DOI: 10.1002/adts.202100173 (2021).

81. J. Jang, T. A. Evans, B. Samanta, K. Zeng, M. Caspary Toroker, K. S. Choi, “A comparative study of Bi, Sb, BiSb for electrochemical nitrogen reduction leading to a new catalyst design strategy”, J. Materials Chemistry A, DOI: 10.1039/D1TA05327B (2021).

80. Moschkowitsch, S. Gonen, K. Dhaka, N. Zion, Y. Tsur, M. Caspary Toroker, L. Elbaz, “Bifunctional PGM-Free Metal Organic Frameworks-based Electrocatalysts for Alkaline Electrolyzers: Trends in the Activity with Different Metal Centers”, Nanoscale 13, 4576 (2021) (2021). [Link]

79. Attias, K. V. Sankar, K. Dhaka, W. Moschkowitsch, L. Elbaz, M. Caspary Toroker, Y. Tsur, “Optimization of Ni‐Co‐Fe based catalysts for oxygen evolution reaction by surface and relaxation phenomena analysis”, ChemSusChem 14, 1737 (2021). [Link]

78. R. Brill, S. Biswas, M. Caspary Toroker, G. de Ruiter, E. Koren, “Dipole-Induced Raman Enhancement Using Noncovalent Azobenzene-Functionalized Self-Assembled Monolayers on graphene terraces”, ACS Applied Materials & Interfaces 13, 10271 (2021). [Link]

77. S. Biswas and M. Caspary Toroker, “Using computers to discover materials that generate non-polluting fuels”, Frontiers for Young Minds, in press (2021). IF=N/A

76. Moschkowitsch, K. Dhaka, S. Gonen, R. Attias, Y. Tsur, M. Caspary Toroker, L. Elbaz, “Ternary NiFeTiOOH Catalyst for Oxygen Evolution Reaction: Study of the Effect of the Addition of Ti at Different Loadings”, ACS Catalysis 10, 4879 (2020). [Link]

75. Polishchuk, N. Bianco Stein, A. Lang, M. Caspary Toroker, A. Katsman, B. Pokroy, “Strong Band Gap Blueshift in Copper (I) Oxide Semiconductor via Bio-Inspired Route”, Adv. Fun. Mat. 30, 1910405 (2020). [Link]

74. Korkus Hamal and M. Caspary Toroker, “The effect of Fe and Co dopants under strain on the efficiency of NiOOH catalyst”, ChemCatChem 12, 2801 (2020). [Link]

73. Ben-Melech Stan, K. Dhaka, M. Caspary Toroker, “Charge transport along teo-dimensional metal/semiconductor/metal systems”, Isr. J. Chem. 60 (8-9), 888 (2020). [Link]

72. Y. Tovi and M. Caspary Toroker, “Pathways for charge transport through material interfaces”, J. Chem. Phys. 153, 024104 (2020). [Link]

71. M. Pavone and M. Caspary Toroker, “Toward ambitious modeling of nanoscale catalysts for water splitting”, ACS Energy Lett. 5, 2042 (2020). [Link]

70. N. Snir and M. Caspary Toroker, “The operando optical spectrum of hematite during water splitting through a GW-BSE calculation”, J. Chem. Theo. and Comp. 16(8), 4857 (2020). [Link]

69. Bhargava, R. Eppstein, J. Sun, M. A. Smeaton, H. Paik, L. F. Kourkoutis, D. G. Scholm, M. Caspary Toroker, R. D. Robinson, “Breakdown of the small-polaron hopping model in higher-order spinels”, Adv. Mat., 2004490 (2020). [Link]

68. V. Fidelsky Kozokaro, P. Kwesi Addo, H. Masood Ansari, V. Ingrid Birss, M. Caspary Toroker, “Optimal Oxygen Vacancy Concentration for CO2 Reduction in LSFCr Perovskite: a Combined Density Functional Theory and Thermogravimetric Analysis Measurement Study”, J. Phys. Chem. C 124(50), 27453 (2020).

67. H. Shasha, N. Yatom, M. Prill, J. Zaffran, S. Biswas, D. Aurbach, M. Caspary Toroker, Y. Ein-Eli, Unveiling ionic diffusion in MgNiMnO4 cathode material for Mg-ion batteries via combined computational and experimental studies”, Journal of Solid State Electrochemistry 23, 11, 3209 (2019). 

66. K. Dhaka and M. Caspary Toroker, “Revealing the conducting character of the β-NiOOH catalyst through defect chemistry”, J. Phys. Chem. C 123, 31, 18894 (2019).

65. Y. Elbaz, D. Furman, and M. Caspary Toroker, “Modeling diffusion in functional materials: from density functional theory to artificial intelligence”, Adv. Func. Mat., in press (2019).

64. K. Dhaka and M. Caspary Toroker, “Vacancy formation in 2D and 3D oxides”, 2D Nanomaterials for Energy Applications, Book chapter, Elsevier, in press (2019).

63. A. Bhargava, C. Y. Chen, K. Dhaka, Y. Yao, A. Nelson, K. D. Finkelstein, C. J. Pollock, M. Caspary Toroker, and R. Robinson, “Mn cations control electronic transport in spinel CoxMn3-xO4 nanoparticles”, Chemistry of Materials 31(11), 4228 (2019).

62. J. Xia, K. Dhaka, M. Volokh, G. Peng, Z. Wu, Y. Fu, M. Caspary Toroker, X. Wang, and M. Shalom, “Nickel phosphide decorated with trace platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction”, Sustainable Energy & Fuels, DOI: 10.1039/C9SE00221A (2019).

61. M. Burke Stevens, L. J. Enman, E. Hamal Korkus, J. Zaffran, C. D. M. Trang, J. Asbury, M. G. Kast, M. Caspary Toroker, and S. W. Boettcher, “Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and
electronic band structure”, Nano Research, doi.org/10.1007/s12274-019-2391-y (2019).

60. L. Teitz and M. Caspary Toroker, “Theoretical investigation of dielectric materials for two-dimensional field-effect transistors”, Advanced Functional Materials, doi.org/10.1002/adfm.201808544, Adv. Func. Mat., 1808544 (2019).

59. G. Ben-Melech Stan and M. Caspary Toroker, “On the nature of trapped states in a MoS2 two-dimensional semiconductor with sulfur vacancies”, invited paper, Molecular Physics, doi.org/10.1080/00268976.2019.1576931 (2019).

58. N. Snir, N. Yatom, and M. Caspary Toroker, “Progress in understanding hematite electrochemistry through computational modeling”, Computational Materials Science 160, 411 (2019).

57. E. Korkus Hamal and M. Caspary Toroker, “Strain controlling catalytic efficiency of water oxidation for Ni1-xFexOOH alloy”, Foundations of Molecular Modeling and Simulations, Book chapter, Springer, in press (2019).

56. E. S. Davydova, J. Zaffran, K. Dhaka, M. Caspary Toroker, and D. R. Dekel, “Hydrogen oxidation on Ni-based electrocatalysts: the effect of metal doping”, Catalysts 8(10), 454 (2018).

55. M. Nagli and M. Caspary Toroker, “Nickel hydroxide as an exceptional deviation from the quantum size effect”, Communication, J. Chem. Phys. 149, 141103 (2018).

54. L. Enman, M. Burke Stevens, M. H. Dahan, M. Nellist, M. Caspary Toroker, S. Boettcher, “Operando X-ray Absorption Spectroscopy Shows Fe Oxidation is Concurrent with Oxygen Evolution in Cobalt-Iron (Oxy)hydroxide Electrocatalysts”, Angew. Chem. Int. Ed., in press (2018).

  • Research highlight in Nature Catalysis:

https://www.nature.com/articles/s41929-018-0154-x

53. Y. Elbaz, D. Furman, and M. Caspary Toroker, “Hydrogen transfer through different crystal phases of nickel oxy/hydroxide”, Phys. Chem. Chem. Phys., in press (2018)

52. Liora Teitz and Maytal Caspary Toroker, “Materials with honeycomb structures for gate dielectrics in two-dimensional field effect transistors – an ab-initio study”, Ceramics International, DOI:10.1016/j.ceramint.2018.07.193 (2018).

51. Chen Hareli and Maytal Caspary Toroker, “Water oxidation catalysis for NiOOH by a Metropolis Monte Carlo algorithm”, J. Chem. Theory Comput. 14(5), 2380 (2018).

50. Daniel Peeters,  Oliver Mendoza Reyes,  Lukas Mai,  Alexander Sadlo,  Stefan Cwik,  Detlef Rogalla,  Hanno Schütz,  Hans-Werner Becker,  James Hirst,  Sönke Müller,  Dennis Friedrich,  Dariusz Mitoraj,  Michael Nagli,  Maytal Caspary Toroker,  Rainer Eichberger,  Radim Beranek  and  Anjana Devi, “CVD-grown copper tungstate thin films for solar water splitting”, J. Mater. Chem. A 6, 10206 (2018).

49. G. Ben-Melech Stan and M. Caspary Toroker, “Lateral chemical bonding in two-dimensional transition-metal dichalcogenide metal/semiconductor heterostructures”, J. Phys. Chem. C 122 (10), 5401 (2018).

48. D. Grave, N. Yatom, D. S. Ellis, M. Caspary Toroker, A. Rothschild, “The “rust” challenge: on the correlations between electronic structure, excited state dynamics, and photoelectrochemical performance of hematite photoanodes for solar water splitting”, Advanced Materials, 1706577 (2018).

47. J. Zaffran, M. Nagli, M. Shehade, and M. Caspary Toroker, “Efficient cationic agents for exfoliating two-dimensional nickel oxide sheets”, Theo. Chem. Acc. 137:3 (2018).

46. M. Nagli and M. Caspary Toroker, “The electronic structure of two-dimensional transition metal hydroxide monolayers and heterostructures”, invited paper to Solid State Ionics 314, 149 (2018).

45. J. Zaffran and M. Caspary Toroker, “Understanding the oxygen evolution reaction on a two-dimensional NiO2 catalyst”, communication, ChemElectroChem 4(11), 2764 (2017). 

44. Y. Elbaz and M. Caspary Toroker, “Dual mechanisms: Hydrogen transfer during water oxidation catalysis of pure and Fe-doped nickel oxyhydroxide”, J. Phys. Chem. C 121(31), 16819 (2017). 

43. N. Yatom, Y. Elbaz, S. Navon, and M. Caspary Toroker, “Identifying the bottleneck of water oxidation by ab initio analysis of in situ optical absorbance spectrum”, Phys. Chem. Chem. Phys. 19, 17278 (2017).

42. E. Aharon and M. Caspary Toroker, “The effect of covering Fe2O3 with Ga2O3 overlayer on water oxidation catalysis”, Catalysis Letters 147(8), 2077 (2017).

41. J. Zaffran, M. B. Stevens, C. D. M. Trang, M. Nagli, M. Shehadeh, S. W. Boettcher, and M. Caspary Toroker, “Influence of electrolyte cations on Ni(Fe)OOH catalyzed oxygen evolution reaction”, Chemistry of Materials 29 (11), 4761 (2017).

40. V. Butera and M. Caspary Toroker, “Practical cluster models for a layered beta-NiOOH material”, Materials 10(5), 480 (2017).

39. V. Fidelsky, D. Furman, Y. Khodorkovsky, Y. Elbaz, Y. Zeiri, and M. Caspary Toroker, “Electronic structure of beta-NiOOH with hydrogen vacancies and implications for energy conversion applications”, invited paper to MRS Communications, DOI: https://doi.org/10.1557/mrc.2017.26, 1-8 (2017).

38. M. H. Dahan and M. Caspary Toroker, “Water oxidation catalysis with Fe2O3 constrained at the nanoscale”, J. Phys. Chem. C, 121(11), 6120 (2017).

37. V. Fidelsky and M. Caspary Toroker, “The secret behind the success of doping nickeloxyhydroxide with iron”, Phys. Chem. Chem. Phys. 19, 7491 (2017).

36. V. Fidelsky and M. Caspary Toroker, “Enhanced water oxidation catalysis of nickel oxyhydroxide through the addition of vacancies”, J. Phys. Chem. C 120, 25405 (2016).

35. O. Neufeld, A. S. Reshef,  L. Lubomirsky, and M. Caspary Toroker, “Metal back contact interface design in photoelectrochemical devices”, J. Mater. Chem. C 4, 8989 (2016).

34. N. Yatom and M. Caspary Toroker, “Electronic structure of catalysis intermediates by the G0W0 approximation”, Catalysis Letters 146(10), 2009 (2016).

33. J. Zaffran and M. Caspary Toroker, “Benchmarking Density Functional Theory methods to model NiOOH material properties: Hubbard and van der Waals corrections vs. hybrid functionals”, J. Chem. Theo. Comp. 12(8), 3807 (2016).

32. V. Butera and M. Caspary Toroker, “Electronic properties of pure and Fe-doped beta-Ni(OH)2: New insights using density functional theory with a cluster approach”, J. Phys. Chem. C 120, 12344 (2016).

31. V. Fidelsky, V. Butera, J. Zaffran, M. Caspary Toroker, “Three fundamental questions on one of our best water oxidation catalysts: a critical perspective”, Theor. Chem. Acc., 135:162 (2016).

30. V. Fidelsky and M. Caspary Toroker, “Engineering band edge positions of nickel oxyhydroxide through facet selection”, J. Phys. Chem. C 120, 8104 (2016).

29. O. Neufeld and M. Caspary Toroker, “Play the heavy: an effective mass study for α-FeO and corundum oxides “, J. Chem. Phys. 144, 164704 (2016).

28. J. Zaffran and M. Caspary Toroker, “Designing efficient doped NiOOH catalysts for water splitting with first principles calculations”, ChemistrySelect 1(5), 911 (2016).

27. N. Yatom and M. Caspary Toroker, “Manipulating electrochemical performance through doping beyond the solubility limit”, Phys. Chem. Chem. Phys. 18, 16098 (2016).

26. J. Zaffran and M. Caspary Toroker, “Metal-oxygen bond ionicity as an efficient descriptor for doped NiOOH photocatalytic activity”, ChemPhysChem 17, 1 (2016).

25. O. Neufeld and M. Caspary Toroker, “A novel high-throughput screening approach for functional metal/oxide interfaces”, J. Chem. Theo. Comp. 12, 1572 (2016).

24. O. Neufeld, N. Yatom, and M. Caspary Toroker, “A first principles study on the role of an Al2O3 overlayer on Fe2O3 for water splitting”, ACS Catalysis 5, 7237 (2015).

23. N. Yatom and M. Caspary Toroker, “Hazardous doping for photo-electrochemical conversion: The case of Nb-doped Fe2O3 from first principles”, Invited paper for the special issue “Molecular Engineering for Electrochemical Power Sources”, Molecules 20 (11) 19900 (2015).

22. N. Yatom, O. Neufeld, and M. Caspary Toroker, “Toward settling the debate on the role of Fe2O3 surface states for water splitting”, J. Phys. Chem. C 119 (44) 24789 (2015).

21. O. Neufeld and M. Caspary Toroker, “Can we judge an oxide by its cover? The case of platinum over alpha-Fe2O3 from first principles”, Phys. Chem. Chem. Phys. 17, 24129 (2015).

20. M. Caspary Toroker and E. A. Carter, “Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion”, J. Mater. Sci. 50(17), 5715 (2015).

19. O. Neufeld and M. Caspary Toroker, “Pt-doped Fe2O3 for enhanced water splitting efficiency: a DFT+U study”, J. Phys. Chem. C 119, 5836 (2015).

18. M. Caspary Toroker, “Theoretical Insights into the Mechanism of Water Oxidation on Non-stoichiometric and Ti – doped Fe2O3(0001)”, J. Phys. Chem. C, 118, 23162 (2014).

17. N. Alidoust, M. Caspary Toroker, and E. A. Carter, “Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion”, J. Phys. Chem. B, 118, 7963 (2014).

16. N. Alidoust, M. Caspary Toroker, J. A. Keith and E. A. Carter, “Significant reduction in NiO band gap upon formation of LixNi1-xO alloys: Applications to solar energy conversions“, ChemSusChem 7, 195 (2014).

15. M. Caspary Toroker and E. A. Carter, “Transition metal oxide alloys as potential solar energy conversion materials“, J. Mater. Chem. A 1, 2474 (2013).

14. M. Caspary Toroker and E. A. Carter, “Hole transport in non-stoichiometric and doped wustite“, J. Phys. Chem. C 116, 17403 (2012).

13. M. Caspary Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao, E. A. Carter, “First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes“, Phys. Chem. Chem. Phys. 13, 16644 (2011).

12. P. Liao, M. Caspary Toroker, E. A. Carter, “Electron transport in pure and doped hematite“, Nano Lett. 11, 1775 (2011).

11. M. Caspary Toroker, U. Peskin, “A quantum mechanical flux correlation approach to steady-state transport rates through molecular junctions“, Chem. Phys. 370, 124 (2010).

10. D. Davis, M. Caspary Toroker, S. Speiser, U. Peskin, “On the effect of nuclear bridge modes on Donor-Acceptor electronic coupling in donor-bridge-acceptor molecules”, Chem. Phys. 358, 45 (2009).

9. M. Caspary Toroker, U. Peskin. “On the relation between resonances and steady-state currents in molecular junctions”, J. Phys. B. 42, 044013 (2009).

8. R. Volkovich, M. Caspary Toroker, U. Peskin. “Site-Directed Electronic Tunneling in a Dissipative Molecular Environment”, J. Chem. Phys., 129, 034501 (2008). 

7. D. Brisker, I. Cherkes, C. Gnodtke, D. Jarukanont, S. Klaiman, W. Koch, S. Vaisman, R. Volkovich, M. Caspary Toroker, U. Peskin. “Controlled Electronic Transport through Branched Molecular Conductors“, J. Molecular Physics, 106, 281 (2008).

6. M. Caspary Toroker, U. Peskin. “Electronic Transport through Molecular  Junctions with Non-Rigid Molecule-Leads Coupling”, J. Chem. Phys. 127, 154706 (2007).

5. M. Caspary, N. Moiseyev. “Simultaneous Propagation of Different Wavepackets Driven by Lasers”, Chem. Phys. Lett. 431, 169 (2006).

4. M. Caspary, U. Peskin. “Site-Directed Electronic Tunneling Through a Vibrating Molecular Network”, J. Chem. Phys. 125, 184703 (2006).

3. M. Caspary, U. Peskin. “Site-Directed Deep Electronic Tunneling Through a Molecular Networks”, J. Chem. Phys. 123, 151101 (2005).

2. M. Caspary, L. Berman, U. Peskin, “Thermal Resonant Tunneling Rates by a generalized Flux Averaging Method“, Isr. J. Chem. 42, 237 (2002).

1. M. Caspary, L. Berman, U. Peskin, “Thermal Rate Constants for Resonance-Supporting Reaction Barriers by the Flux Averaging Method“, Chem. Phys. Lett. 369, 232 (2003).

Google scholar citation:
http://scholar.google.co.il/citations?user=df9RTx8AAAAJ&hl=en

ORCID ID:

http://orcid.org/0000-0003-1449-2977